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We investigate the stability of a supersonic boundary layer  in relation to small  two-dimensional d is -  
turbances in the Mach number range 1 < M < 4. The behavior of the neutral  eurves corresponding to the ad-  
ditional unstable frequencies discovered in [1] is examined at different Mach numbers  M and surface t em-  
pera tures  T w. Regions in the Tw, M plane are  classified according to the number and kind of neutral  
curves.  We show that the destabilizing effect of viscosi ty  on the boundary layer  disappears  with increase  
in Mach number.  

1. In an investigation of the stability of a supersonic boundary layer  by numerica l  integration of in- 
viscid equations Mack discovered the existence of higher unstable natural frequencies [2]. They appear in 
the case where the phase velocity c r of an infinitely small  disturbance exceeds the velocity of sound a w at 
wall t empera ture  [2]: 

Cr / a,~ > 1 (1.1) 

For  a heat- insulated surface this condition is fulfilled when M > 2.2. Mack investigated the higher 
unstable frequencies which appear in this case by numerical  integration of the inviscid and complete s ta-  
bility equations. Some resul ts  of his investigations are  given in [3]. Instabil i ty of this type is caused by 
inert ial  effects,  and the viscosi ty  has a stabilizing effect. 

When the surface coo l s ,  the increased  unstable frequencies of this type can be significant at Math 
numbers  close to unity if the cooling is rapid enough and condition (1.1) is fulfilled. 

A determination of the conditions for complete stabilization in [1] showed the existence of additional 
stable frequencies.  These frequencies exist  in ranges of surface tempera tures  at which condition (1.1) is 
not fulfilled. At Maeh numbers  close to unity the instability of these additional frequencies is due to v i s -  
cosity. 

In the presen t  paper  we investigate the behavior of the neutral  curves  corresponding to the additional 
unstable frequencies d iscovered in [1] in relat ion to change in Math number M and surface tempera ture  T w. 

2. The stability is investigated by numerical  integration of the L e e s - L i n  equations 

(g - -  c) r + p (% + q) + p~ ~ = 0 (2.1) 
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with boundary conditions 

! ( 0 ) = ~ ( 0 ) = 0 ( 0 ) = 0 ,  I ,~ ,0-*0 as y - , ~  (2.2) 

Here U, p, and T are  the t ime-ave raged  velocity, density, and temperature ;  I, a% r, 0, ~, and s = 0 d~/dT 
are  dis turbances of the longitudinal and t r ansve r se  velocit ies,  density, temperature ,  p res su re ,  and v i scos -  
ity; y is the distance along the normal  to the surface;  the subscr ipt  y denotes differentiation; 7 is the adia-  
batic constant; M is the Mach number; cr is the Prandt l  number;/~ and/~2 =-2/3/~ are  the viscosi ty  coeffi- 
cients;  R is the Reynolds number;  ~ is the disturbance wave number; and C=Cr+ic  i is the disturbance 
phase velocity. We investigate neutral  dis turbances and, hence, c i = 0. We assume that the dependence of 
the dis turbances on the longitudinal coordinate and the t ime has the form exp i~ (x -c t ) .  

To reduce sys tem (2.1) to a form suitable for numerica l  integration we introduct the var iables  

zx = f ,  z2 = fU, z a =  q), z4 = n / T M  2, zs = @, z~ = @y 

The substitution r e d u c e s ' s y s t e m  (2.1) with boundary equations (2.2) to the form [4] 

6 

z i y  = ~ C i j z j  (i=1,...,6) 
J=l 

zl (0) = z3 (0) = za = 0 
zl, za, za ~ 0 w h e n  y --* co 

(2.3) 

(2.4) 

The values of if, R, and c r required  for sat isfaction of the boundary conditions (2.4) can be sought by 
the method descr ibed  in [5]. Outside the boundary layer  we seek analytical solutions, decaying at infinity 
[4], which a re  integrated numerical ly  f rom the upper l imit  to the wall by the orthogonalization method [6]. 
F rom the obtained special  solutions at  y = 0  we plot the amplitude of the thermal  disturbance as a function 
of ~, R, and Cr and seek the zero of this function by Newton's i terat ion method [4]. 

As pract ice  in calculations showed, this is possible only in the case  where the values of c r on the 
upper and lower branches  of the neutral  curve differ considerably.  As the surface cools,  C r ~  1 - M  - i  on 
the upper and lower asymptotes .  Hence, beginning at a certain vatue of R, the search  for eigenvalues does 
not lead to convergence.  

In the p resen t  paper  we r ega rd  the amplitude of the thermal  disturbance on the surface as a function 
of ~, ~R, and ~/1-M2(1-c)2/(~. These pa rame te r s  va ry  smoothly along the neutral curve and on the a s -  
ymptotes  ~R and ~f l -M2(1-c)2 /~  level out to different constant values. This enables us to calculate to 

= 0 and, using the method of [1], to find the conditions for complete stabilization of the investigated neu- 
t ra l  curves .  

In the numer ica l  calculations we took ~=0.72 and 7 = 1.41. We assumed that the viscosi ty  var ied  with 
tempera ture  in accordance  with Sutherland's  law 

1 + ( T  f T ~ )  
=@)8/ r  T - r ( T  s / T J  

where T s = 110 ~ is  the Sutherland constant,  and Tr 157 ~ is the tempera ture  at infinity. The eigenvalues 
for M= 2.2 were calculated at this t empera ture  in [4] and are  compared  with some of the resul ts  of the 
present  work. 

For  the determinatibn of U, T, and p - the f r e e - s t r e a m  velocity, tempera ture ,  and density dis t r ibu-  
tions - we numer ica l ly  integrated the equations of the laminar  boundary layer  on a flat plate in conjunction 
with sys tem (2.3). The integration was pe r fo rmed  by the method descr ibed in detail in [4]. 

3. We invest igated the stability in the range 1 < M < 4. In Fig. 1 the complete stabilization t empera -  
ta res  Tw* of the f i r s t  (1) and second (2) neutral  curves  are  plotted as a function of M. The dashed line de- 
notes the t empera tu res  of format ion of these neutral  curves.  If we limit ourse lves  to M= 3.3 the in t e r sec -  
tions of the curves  in Fig. 1 form five regions.  The neutral  stability curves  charac te r i s t i c  of each region 
are  shown in Figs.  2 and 3. The le t ters  beside the neutral  curves  denote the regions to which these curves  
correspond.  

In region a there  is one neutral  curve of complex form. For  M=2.2 there a re  two such curves  (Fig. 
2, Tw= 1.837 - t h e  heat- insulated surface,  and Tw= 1.75). For  M=3 there is one neutral  curve (Fig. 3, 
Tw=2.3).  The dots in Fig. 2 denote the points, taken from [4], for the heat- insulated surface.  
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With reduction of surface tempera ture  the neutral  curve is deformed so that for point N (Figs. 2 and 
3) a - ~ 0 ,  R -~ ~o. This leads to the formation of two neutral  curves ,  which exist  in region b (Fig. 2, M=2.2,  
Tw=l .7 ;  Fig. 3, M=3,  Tw=2.25).  The top scale is used to obtain the dashed curves  in Figs.  2, 3, and 4. 

In region c there  is only the f i rs t  neutral  curve (Fig. 2, M =2.2, Tw = 1.6), and in region d only the 
second (Fig. 3, M=3,  Tw=2.15).  

Region e is the region of complete stabilization. 

According to the foregoing, all the neutral  stability curves  can be divided into three kinds and on the 
basis of the presented resul ts  we can determine the role of v iscos i ty  in the stability of the supersonic 
boundary layer .  

Curves of the f i r s t  kind exist  in regions b and c. Examples of such curves  are  shown in Fig. 2 (con- 
tinuous curves  b and c, dashed curve b) and Fig. 3 (lower curve b). A charac te r i s t i c  feature of these 
curves  is that with increase  in wave number the Reynolds number decreases  on both branches of the neu- 
t ra l  curve,  and the highest ~ is  attained close to the cr i t ical  Reynolds number.  Such neutral  curves  are  
charac te r i s t i c  of instability due to viscosity.  

Curves of the second kind exist  in regions b and d. Examples of such curves  are  shown in Fig. 3 
(upper curve b and dashed curve d). The highest wave number for these curves  is attained on the upper 
asymptote,  and with reduction in R the wave number on the upper asymptote is reduced. In this case  the 
instability is due to inert ial  (inviscid) effects,  and the v iscos i ty  has a purely stabilizing effect. 

For  neutral  Curves of the third type the instability is due t o  inert ial  and viscid effects.  Such curves  
have an inviscid asymptote,  but the highest G is attained near the cr i t ica l  Reynolds number.  Curves a in 
Fig. 2 a re  examples of such curves .  

Applying the proposed classif icat ion to the neutral  curves  responsible for the stability of the super-  
sonic boundary layer  we can see that the f i r s t  neutral  curve i always belongs to the f i rs t  type, i .e. ,  is  due 
to viscosi ty.  The second neutral  curve 2 belongs to the f i r s t  type at low Mach numbers .  With increase  in 
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M at temperatures above the temperatures for complete inviscid stabilization (dot-dash curve in Fig. i) an 
inviscid asymptote appears on it, i.e., it belongs to the third type, while in region d it belongs to the second 

type. 

An increase in Mach number alters the role of the neutral curves in boundary layer stability. At low 
Mach numbers the first curve 1 plays the decisive role in stability. Figure 4 shows the values of the crit- 
ical Reynolds numbers R* as a function of the surface temperature T w. For M=2.2 (dashed curves) the 
critical Reynolds numbers of the first curve 1 are always less than those of the second curve 2. With in- 
crease in M and as in~dscid effects begin to predominate at the second neutral curve it begins to play the 
leading role in stability. For M=3.0 the stability is determined either by the first or by the second neu- 
tral curve, depending on T w (Fig. 4, continuous lines), and when M> 3.3 it is determined only by the second 
neutral curve. 

Thus, the destabilizing effect of viscosity on the boundary layer disappears with increase in Mach 
number. This is manifested in the reduction of the role of the first, purely ~viscid" neutral curve and in 
assumption of predominance by inertial effects at the second neutral curve. 

The author thanks S. A. Gaponov for constant attention, help in the work, and useful discussions. 
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